• Press Release

New Discovery in C. difficile Biology Could Lead to Treatments for Dangerous Bacterial Infections

  • New York, NY
  • (November 25, 2019)

A process called sporulation that helps the dangerous bacterium Clostridium difficile (C. difficile) to survive inhospitable conditions and spread is regulated by epigenetics, factors that affect gene expression beyond the DNA genetic code, researchers at the Icahn School of Medicine at Mount Sinai report. This is the first discovery that epigenetics regulate sporulation in any bacteria. Their research, published November 25th in Nature Microbiology, opens a new window to developing treatments for this devestating infection.

C. difficile infects nearly half a million people each year, causing severe diarrhea and killing just under 10 percent of those over 65 who contract it. Spores of the bacteria, which are spread through feces, are extremely resilient and can survive outside the body for weeks or months, infecting individuals who come in contact with contaminated surfaces.

Since the infection is so common and devastating, the C. difficile genome has been well studied, but Gang Fang, PhD, Associate Professor of Genetics and Genomic Sciences at Mount Sinai’s Icahn Institute for Data Science and Genomic Technology and senior author of the study, says he and his colleagues took a different approach in their research. “We wanted to study beyond the genetic code of the bacteria and look at what chemical modifications were being made to the genome,” said Dr. Fang. While these epigenetic chemical modifications, called methylation, do not alter the sequence of a gene, they can modify a particular gene’s activity to render it more or less active, which has profound impacts on the organism’s function. 

Dr. Fang’s team pioneered the use of third-generation DNA sequencing to map epigenetic factors in bacteria in 2012 and began studying C. difficile epigenetics in 2015. First, the team isolated C. difficile from fecal samples of 36 patients in the intensive care unit (ICU) at Mount Sinai Hospital who had been infected with it. They analyzed the samples and found one particular epigenetic pattern that was highly conserved throughout all the samples. Next, they checked about 300 C. difficile genomes from GenBank, a databank of genetic sequences run by the National Institutes of Health, and found that all shared the same gene responsible for the epigenetic pattern found in the ICU patients. 

Suspecting this epigenetic pattern was playing a crucial role in the function of the bacteria, Dr. Fang’s team collaborated on two further studies of C. difficile sporulation and mice infected with C. difficile, with the lab of Aimee Shen, PhD, Associate Professor of Molecular Biology & Microbiology at Tufts University Medical School and a co-senior author of the study, and with the lab of Rita Tamayo, PhD, Associate Professor of Microbiology and Immunology at the University of North Carolina, Chapel Hill. In one study with mice, the researchers found that when they inhibited the gene responsible for the epigenetic pattern, as much as 100 times less bacteria was present after 6 days compared to unaltered bacteria.  

Dr. Fang says the findings in these studies underscore the significance of epigenetics in the study of bacteria and drug development for infection.

In addition to offering new epigenetic insights into the study of C. difficile and possible targets for drug development, Dr. Fang hopes this research will encourage further studies of the epigenetic characteristics of bacteria. “This is just the beginning of our understanding of epigenetic regulation in bacteria; there are still so many questions yet to be answered,” said Dr. Fang. “We hope this exciting discovery will encourage further interdisciplinary collaborations to investigate epigenetics of bacteria and how we can use these new insights to develop life-saving treatments for infection.”


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2023-2024.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.