• Press Release

Mount Sinai Establishes Center for Computational and Systems Pathology

  • New York, NY
  • (August 23, 2016)

{To watch researchers discuss new pathology techniques using the latest technology, click here}  

The Department of Pathology at the Icahn School of Medicine at Mount Sinai has established the Center for Computational and Systems Pathology to revolutionize pathology practice, using advanced computer science and mathematical techniques coupled with cutting-edge microscope technology and artificial intelligence.  The goal of this new academic research facility is to explore efforts to more accurately classify diseases and guide treatment using computer vision and machine learning techniques.

The Center for Computational and Systems Pathology will be a hub for the development of new diagnostic, predictive, and prognostic tests and will partner with Mount Sinai-based “Precise Medical Diagnostics” (Precise MDTM ), which has been under development for more than three years by a team of physicians, scientists, mathematicians, engineers, and programmers.

Carlos Cordon-Cardo, MD, PhD, will oversee the new center, located at Mount Sinai St. Luke’s, and will continue his role as Chair of the Department of Pathology at the Mount Sinai Health System and Professor of Pathology, Genetics and Genomic Sciences, and Oncological Sciences at the Icahn School of Medicine.  Gerardo Fernandez, MD, Associate Professor of Pathology, and Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, will be the Center’s Medical Director.  He will work closely with Michael Donovan, MD, PhD, Research Professor of Pathology at the Icahn School of Medicine, and Jack Zeineh, MD, Director of Technology for Precise MD.

“Our goal is to provide a precise mathematical approach to classifying and treating disease, which will assist our clinicians with information for effective patient care and health management,” says Dr. Cordon-Cardo.  “By refining diagnoses, we can save patients from unnecessary treatments.”

Mount Sinai’s Department of Pathology processes more than 80 million tests a year, making it the largest department of its kind in the country.

Precise MD is developing new approaches to characterizing an individual’s cancer by combining multiple data sources and analyzing them with mathematical algorithms, offering a more sophisticated alternative to standard approaches.  One such example is Precise MD’s approach to improve upon the Gleason score, a grading system that has been used since the 1960s to establish the prognosis for a prostate cancer and guide the patient’s treatment options.

“We’re characterizing tumors based on the combination of their architectural patterns and biomarkers,” says Dr. Fernandez.  “Computer vision analysis, leveraging multispectral fluorescence microscopic imaging, enables us to see what the human eye cannot.”

In its initial phase this summer, Precise MD will complete a test used for patients who have had prostatectomies at Mount Sinai Health System, to help determine which of them are more likely to have a recurrence of cancer and may need additional therapy such as chemotherapy.  

“Precise MD’s approach gives us an in-depth knowledge about biological behavior of prostate cancer and allows us to choose appropriate patients for active surveillance,” says Ash Tewari, MD, Chair of the Department of Urology at the Mount Sinai Health System and the Kyung Hyun Kim, MD Professor of Urology at the Icahn School of Medicine.  “Due to their support, we have a large pool of patients who are with active surveillance.”

A second, higher-impact test will follow in 2017, which will be used to characterize prostate cancer in newly diagnosed patients. At that time, Dr. Cordon-Cardo says all prostate cancer patients at Mount Sinai will have the option to receive this test.    

It is anticipated that in 2017 other current efforts will yield additional novel computer vision and machine learning tools to better characterize breast cancer.  The Center for Computational and Systems Pathology and the Precise MD platform could eventually be used to characterize any number of disease states, including but not limited to melanoma, lung, and colon cancers as well as chronic inflammatory conditions such as inflammatory bowel disease.


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2024-2025.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.