• Press Release

Mount Sinai Researchers Use “Blacklist” Computing Concept as Novel Method to Streamline Genetic Analysis

Screening method shows promise as a key to faster therapeutic innovation

  • New York, NY
  • (December 24, 2018)

Researchers at the Icahn School of Medicine at Mount Sinai and The Rockefeller University have discovered a new use for a long-standing computational concept known as “blacklisting,” which is commonly employed as a form of access or spam control, blocking unwanted files and messages. Using blacklisting as a filter to single out genetic variations in patient genomes and exomes that do not cause illness, researchers have successfully streamlined the identification of genetic drivers of disease. This method is described in the December 2018 issue of Proceedings of the National Academy of Science of the United States of America.

In whole-exome sequencing—the process of identifying variations in protein-coding genes to determine the genetic underpinnings of any given illness—tens of thousands of genetic variants are identified, but only a few are deemed pathogenic, meaning disease-causing. Traditionally, in order to identify pathogenic mutations, scientists must sift through considerable amounts of data and remove genetic variants that are unlikely to cause disease, slowing down the process of genetic analysis and, subsequently, clinical treatment. To address this cumbersome process, researchers from the Icahn School of Medicine and The Rockefeller University investigated and subsequently identified a large portion of the non-pathogenic genetic variants, from which the “blacklist” was generated. Following this, they developed a program, known as ReFiNE, and a corresponding webserver that other researchers can use to automate the creation of their own blacklists.

“Until now, there has been no viable published method for filtering out non-pathogenic variants that are common in human genomes and absent from current genomic databases,” said Yuval Itan, PhD, Assistant Professor of Genetics and Genomic Sciences at the Icahn School of Medicine and senior author of the publication. “Using the blacklist, researchers will now be able to remove genetic ‘noise’ and focus on true disease-causing mutations.”

Noting the data-centric society we live in, Dr. Yuval says efficiency is key. His hope is that this contemporary tool can be used by clinicians, researchers, and scientists across the globe to conduct genetic analysis more quickly and accurately, helping to accelerate the pace of genomic medicine.

This work was partially supported by NIH grants:  P01AI061093, U24AI086037, R18AI048693, T32GM007280, R01AI088364, R01AI095983, R01AI127564, and the Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai.

Proceedings of the National Academy of Sciences Dec 2018, 201808403; DOI:10.1073/pnas.1808403116


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2024-2025.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.