• Press Release

Mount Sinai Researchers Discover Treatment Option for Rare Genetic Disorder

Personalized Genetic Sequencing Uncovers Previously Unknown Mutation

  • New York, NY
  • (August 04, 2020)

Researchers from the Icahn School of Medicine used a novel genetic sequencing technology to identify the genetic cause of—and a treatment for—a previously unknown severe auto inflammatory syndrome affecting an 18-year-old girl since infancy.

The technology, tailored to the patient’s own genetic code at a single cell level, helped the researchers characterize an unknown mutation in a gene called JAK1 that caused the patient’s immune system to be permanently turned on, resulting in rashes over much of her skin, growth abnormalities, kidney failure, allergic hypersensitivities, and an unusual inflammatory condition throughout the digestive tract.

The study, led by Dusan Bogunovic, PhD, Associate Professor of Microbiology, and Pediatrics, at the Icahn School of Medicine at Mount Sinai, faculty member of The Mindich Child Health and Development Institute and the Precision Immunology Institute at Mount Sinai, and Director of the Center for Inborn Errors of Immunity, was published in the August 3 issue of the journal Immunity. The discovery points toward new ways to study how genetic diseases manifest and presents a model of personalized diagnosis and treatment for patients with genetic diseases.

Autoinflammatory diseases are caused by abnormal activation of the immune system, leading to recurrent episodes of inflammation that may result in damaged or failed organs. The researchers determined that not all of the patient’s cells carried this mutation and had different genetic makeups or genotypes, what the researcher describe as a mosaic.

“Most genes use both their maternal and paternal copies, called alleles,” said Dr. Bogunovic. “Our findings show the JAK1 mutation in this patient used only one copy per cell, known as monoallelic expression. This challenges the textbook principles of genetics and may help explain irregularities that are frequently encountered across genetic diseases.”

In the paper, the researchers describe the use of next-generation genomic, molecular, and multi-parametric immunological tools to probe the effects of the patient’s JAK1 mutation. By mapping the genotype of JAK1 across the patient’s body, researchers were able to pinpoint precisely when the mutation arose in early development in the embryo. It later gave way to a host of symptoms from early childhood to early adulthood. The hunt began for a specific therapy that would curb the excessive activity of her mutant JAK1 and potentially cure her inflammatory symptoms.

“We identified one drug, tofacitinib, a JAK inhibitor, that curbed the excessive activity of her hyperactive inflammation. When administered the therapy, she rapidly improved within weeks. Her skin lesions cleared, her daily gastrointestinal symptoms resolved, and the clinical signs of inflammation went away, putting the patient in remission for two years until her unfortunate demise from coronavirus-related illness,” said Dr. Bogunovic. “This research helps better understand the basic function of JAK1, which has broad implications for diseases of the immune system and how to treat them. In addition, the genetic discoveries uncovered in this case open up new research avenues into the complexities of how genetic diseases manifest and present a model of the future of personalized medicine. By coupling advanced clinical care with next-generation sequencing and detailed laboratory studies, we successfully diagnosed and treated a life-threatening disease.”

The research was accomplished with collaboration from the Vagelos College of Physicians and Surgeons at Columbia University Irving Medical Center, The Rockefeller University and New York University Grossman School of Medicine in New York City and the Universite de Nantes and Centre Hospitalier Universitaire de Nantes in Nantes, France.


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2023-2024.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.