Researchers Identify a Protein That Is Critical for Wound Healing after a Central Nervous System Injury
Plexin-B2, an axon guidance protein in the central nervous system (CNS), plays an important role in wound healing and neural repair following spinal cord injury (SCI), according to research conducted at the Icahn School of Medicine at Mount Sinai and published today in Nature Neuroscience. The study’s findings could aid the development of therapies that target axon guidance pathways for more effective treatment of SCI patients.
Tissue repair after SCI requires the mobilization of immune and glial cells to form a protective barrier that seals the wound, facilitates debris clearing and contains inflammation. Building this barrier involves a process called corralling wherein microglia (immune cells in the CNS) and macrophages (immune cells that originate from blood) form a barrier around the lesion that separates healthy and necrotic tissue. In this study, researchers found that this corralling begins early in the healing process and requires Plexin-B2, a protein that facilitates the movement of immune cells by steering them away from colliding cells.
Researchers found that the deletion of Plexin-B2 in microglia and macrophages impaired corralling, which led to tissue damage, inflammatory spillover, and hindered the regeneration of axons (slender part of a nerve cell where impulses are conducted).
“The role of microglia and macrophages in the spatial organization of glial cells around the injury site via an axon guidance receptor is quite unexpected” said lead investigator Hongyan Jenny Zou, MD, PhD, Professor of Neurosurgery and Neuroscience at the Icahn School of Medicine at Mount Sinai.
Tissue repair in the CNS relies on a coordinated response from diverse cell types in overlapping phases. This complexity makes it difficult to distinguish specific roles of glial cell populations. Previously, astrocytes (supporting glial cells) were presumed to be the main driver for corralling. However, this study identified the critical contribution of injury-activated microglia/macrophages, as well as the role of Plexin-B2 in corralling. Understanding the signaling pathways and interactions of glial cells with each other and the injury environment is fundamental to improving neural repair after a traumatic brain or spinal cord injury.
This research was supported by grants from the National Institutes of Neurological Disorders and Stroke, the Craig H. Neilsen Foundation, the New York State Spinal Cord Injury Research Board, and the National Institute on Aging and the National Institute on Drug Abuse.
About the Mount Sinai Health System
Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.
Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2024-2025.
For more information, visit https://www.mountsinai.org or find Mount Sinai on Facebook, Twitter and YouTube.