• Press Release

New AI-Driven Tool Could Revolutionize Brain Pressure Monitoring in Intensive Care Patients

  • New York, NY
  • (September 05, 2024)

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure in the brain can lead to severe outcomes like strokes and hemorrhages.  

The new approach, driven by artificial intelligence (AI), offers a safer and faster alternative to the current gold standard of drilling into the skull. Details were reported in the September 5 online issue of npj Digital Medicine [doi.org/10.1038/s41746-024-01227-0].  

Currently, detecting and monitoring elevated brain pressure requires invasive procedures that breach the skull. Instead, the research team explored whether intracranial pressure could be predicted by analyzing noninvasive waveform data, such as electrocardiograms, oxygen saturation levels from pulse oximetry, and waveforms obtained from routine head ultrasounds in critical care patients.  

They then developed an AI model capable of generating a representation of brain blood pressure. This model was trained using de-identified patient data from those who had their intracranial pressure measured through invasive methods, such as lumbar catheters or pressure-sensitive probes inserted into the skull. The real-time monitoring tool allows for swift detection of critical changes, enabling health care providers to intervene more quickly and potentially save lives, say the investigators. 

“Increased pressure in the brain can lead to a range of serious complications. We created a noninvasive approach—an AI-derived biomarker for detecting elevated brain pressure—using data already routinely collected in intensive care units (ICUs),” says first author Faris Gulamali, an MD candidate at Icahn Mount Sinai. “Importantly, our study, the largest to date on intracranial hypertension, is the first to provide external validation for our algorithm and demonstrate a direct link between the biomarker and clinical outcomes, which is required for FDA approval. 

The study, a retrospective analysis, used data from two hospitals in different U.S. cities. The tool showed strong performance in detecting intracranial pressure within seconds. Over the course of a patient's admission, being in the top 25 percent of intracranial pressure measurements was linked to a 24-fold increase in the risk of a subdural hemorrhage and a seven-fold increase in the likelihood of needing a craniectomy (a surgical procedure to relieve pressure on the brain). 

The researchers note that the data linking to clinical outcomes is correlational and not causative, and further research is needed to fully establish causality. Next, they plan to conduct further validation studies, including those focused on identifying patients with neurological conditions in the ICU. Additionally, they hope to apply for breakthrough device status with the FDA, possibly bringing this life-saving technology closer to widespread clinical use. 

"Our vision is to integrate this tool into ICUs as a standard part of monitoring critically ill patients. This technology represents a major leap forward, potentially transforming how we manage critically ill patients, reducing the need for risky procedures and enabling faster responses to neurological emergencies,” says senior author Girish N. Nadkarni, MD, MPH, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief, Division of Data-Driven and Digital Medicine. “In addition, our findings suggest it could be a valuable tool not only in neurology but also in managing other severe health conditions, such as post-cardiac arrest, glaucoma, and acute liver failure."  

"Our team's development of this AI-driven clinical decision support tool could be a significant step forward in advancing health outcomes for critically ill patients. If we can validate the use of this tool, we have the potential to improve patient safety by fine-tuning the use of invasive intracranial invasive monitoring in patients with the greatest potential for benefit," says study co-authorDavid L. Reich, MD, President of The Mount Sinai Hospital and Mount Sinai Queens, the Horace W. Goldsmith Professor of Anesthesiology, and Professor of Artificial Intelligence and Human Health at Icahn Mount Sinai. "One of our goals at Mount Sinai is using technology to bring the right team to the right patient at the right time. This tool exemplifies that commitment, offering a tailored solution that has the potential to improve the standard of care for patients at risk of life-threatening brain injuries." 

The paper is titled “Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension.” The remaining authors of the paper, all with Icahn Mount Sinai, are:  Pushkala Jayaraman, (PhD candidate); Ashwin S. Sawant, MD; Jacob Desman, MSE, BS (MD candidate); Benjamin Fox (PhD candidate); Annette Chang, MS (MD candidate); Brian Y. Soong, (MD/PhD candidate); Naveen Arivazagan, MS, BS; Alexandra S. Reynolds, MD; Son Q Duong, MD, MS; Akhil Vaid, MD;  Patricia Kovatch, B.Sc.; Robert Freeman, DNP, RN; Ira S. Hofer, MD; Ankit Sakhuja, MBBS, MS;  Neha S. Dangayach, MD;  and Alexander W. Charney, MD, PhD. 

This work received support from the Scientific Computing and Data team at the Icahn School of Medicine at Mount Sinai, as well as from the Clinical and Translational Science Awards (CTSA) grant UL1TR004419 from the National Center for Advancing Translational Sciences. Additional support came from the Office of Research Infrastructure of the National Institutes of Health under awards S10OD026880 and S10OD030463. 

Please see doi.org/10.1038/s41746-024-01227-0 to view details on competing interests. 

 

About the Icahn School of Medicine at Mount Sinai 

The Icahn School of Medicine at Mount Sinai is internationally renowned for its outstanding research, educational, and clinical care programs. It is the sole academic partner for the eight- member hospitals* of the Mount Sinai Health System, one of the largest academic health systems in the United States, providing care to a large and diverse patient population.   

Ranked 13th nationwide in National Institutes of Health (NIH) funding and among the 99th percentile in research dollars per investigator according to the Association of American Medical Colleges, Icahn Mount Sinai has a talented, productive, and successful faculty. More than 3,000 full-time scientists, educators, and clinicians work within and across 44 academic departments and 36 multidisciplinary institutes, a structure that facilitates tremendous collaboration and synergy. Our emphasis on translational research and therapeutics is evident in such diverse areas as genomics/big data, virology, neuroscience, cardiology, geriatrics, as well as gastrointestinal and liver diseases.  

Icahn Mount Sinai offers highly competitive MD, PhD, and Master’s degree programs, with current enrollment of approximately 1,300 students. It has the largest graduate medical education program in the country, with more than 2,000 clinical residents and fellows training throughout the Health System. In addition, more than 550 postdoctoral research fellows are in training within the Health System.  

A culture of innovation and discovery permeates every Icahn Mount Sinai program. Mount Sinai’s technology transfer office, one of the largest in the country, partners with faculty and trainees to pursue optimal commercialization of intellectual property to ensure that Mount Sinai discoveries and innovations translate into healthcare products and services that benefit the public.  

Icahn Mount Sinai’s commitment to breakthrough science and clinical care is enhanced by academic affiliations that supplement and complement the School’s programs.  

Through the Mount Sinai Innovation Partners (MSIP), the Health System facilitates the real-world application and commercialization of medical breakthroughs made at Mount Sinai. Additionally, MSIP develops research partnerships with industry leaders such as Merck & Co., AstraZeneca, Novo Nordisk, and others.  

The Icahn School of Medicine at Mount Sinai is located in New York City on the border between the Upper East Side and East Harlem, and classroom teaching takes place on a campus facing Central Park. Icahn Mount Sinai’s location offers many opportunities to interact with and care for diverse communities. Learning extends well beyond the borders of our physical campus, to the eight hospitals of the Mount Sinai Health System, our academic affiliates, and globally.  

-------------------------------------------------------  

* Mount Sinai Health System member hospitals: The Mount Sinai Hospital; Mount Sinai Beth Israel; Mount Sinai Brooklyn; Mount Sinai Morningside; Mount Sinai Queens; Mount Sinai South Nassau; Mount Sinai West; and New York Eye and Ear Infirmary of Mount Sinai  


About the Mount Sinai Health System

Mount Sinai Health System is one of the largest academic medical systems in the New York metro area, with 48,000 employees working across eight hospitals, more than 400 outpatient practices, more than 600 research and clinical labs, a school of nursing, and a leading school of medicine and graduate education. Mount Sinai advances health for all people, everywhere, by taking on the most complex health care challenges of our time—discovering and applying new scientific learning and knowledge; developing safer, more effective treatments; educating the next generation of medical leaders and innovators; and supporting local communities by delivering high-quality care to all who need it.

Through the integration of its hospitals, labs, and schools, Mount Sinai offers comprehensive health care solutions from birth through geriatrics, leveraging innovative approaches such as artificial intelligence and informatics while keeping patients’ medical and emotional needs at the center of all treatment. The Health System includes approximately 9,000 primary and specialty care physicians and 11 free-standing joint-venture centers throughout the five boroughs of New York City, Westchester, Long Island, and Florida. Hospitals within the System are consistently ranked by Newsweek’s® “The World’s Best Smart Hospitals, Best in State Hospitals, World Best Hospitals and Best Specialty Hospitals” and by U.S. News & World Report's® “Best Hospitals” and “Best Children’s Hospitals.” The Mount Sinai Hospital is on the U.S. News & World Report® “Best Hospitals” Honor Roll for 2024-2025.

For more information, visit https://www.mountsinai.org or find Mount Sinai on FacebookTwitter and YouTube.